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3.1. Introduction

Most real networks exhibit the presence of non trivial correlations in their
connectivity pattern. Indeed, empirical measurements bring evidence to the
fact that, in some instances, high or low degree vertices of the network tend
to preferentially connect to other vertices with similar degree. In this situa-
tion, correlations are named assortative and are typically observed in social
networks.41 On the other hand, connections in many technological and bi-
ological networks42 attach vertices of very different degree with stronger
likelihood. Correlations are in this case referred to as disassortative. The
overall origin of the appearance of these correlations is not yet completely
understood, neither is the reason for the distinction in real systems between
assortative and disassortative behavior. Correlations, however, drastically
impact the topological properties of networks, encoding the blueprint of
structural organization and are customarily used as a method to classify
real nets. Moreover, correlations do not only have a topological relevance
but may impact a variety of related problems such as percolation phe-
nomena, resilience and robustness, spreading processes, or communication
efficiency, to name just a few. For these reasons, several strategies have been
proposed to model correlated networks. The most general practical algo-
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rithms allow the construction of networks matching any desired correlation
pattern. Other just generate correlations of a fixed signature.

In the following sections, we will focus on the characterization and mod-
eling of correlations in undirected unweighted complex networks. In partic-
ular, we will devote our attention to the statistical characterization of these
features in large scale networks. In the section, we review some important
and useful general analytical results concerning the topological character-
ization of random networks. In the third section we recall a number of
specific metrics. In particular, two vertices correlations will be character-
ized by the average degree of nearest neighbors as a function of the vertex
degree, k̄nn(k), and correlations among three vertices will be described by
several clustering measures, in particular the average clustering coefficient
for vertices of a given degree c̄(k). Real networks are discussed in the fourth
section, where we present some well-known and representative examples of
correlated structures, such as the science collaboration network of physi-
cists submitting papers to a preprint database, the Pretty-Good-Privacy
web of trust between users of digital communications, the world-wide air
transportation network (all of them assortative), and the Internet at the
Autonomous System level, the protein interaction network of the yeast S.
Cerevisiae, and the world trade web of commercial exchanges between coun-
tries in the world (all of them disassortative). Finally, recent developments
in the modeling of correlated networks will be discussed in the fifth section.
We distinguish between disassortative correlations, derived as an implicit
consequence from the formulation of some classical models, and assortative
correlations which should be specifically introduced in theoretical construc-
tions. Several more general and rigorous frameworks able to reconstruct a
wide range of correlation patterns are also presented. Finally, we conclude
by providing an outlook on current and future developments.

3.2. Detailed balance condition

Although several possibilities could be considered, the conditional prob-
abilities P (k′, k′′, . . . , k(n) | k) that a vertex of degree k is simultaneously
connected to a number n of other vertices with corresponding degrees
k′,k′′,. . . ,k(n) might be the simplest theoretical functions that encode de-
gree correlation information from a local perspective. A network is said to
be uncorrelated when the conditionality on k does not apply and, therefore,
the only relevant function is just the degree distribution P (k). Otherwise,
P (k) cannot be considered in isolation and degree correlations must be
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taken into account through the conditional probability functions up to the
pertinent order. In particular, two vertices and three vertices degree cor-
relations are respectively encoded by the conditional probabilities P (k′ | k)
and P (k′, k′′ | k).

Due to the fact that edges join pairs of nodes, the key functions at the
lowest level are P (k) and P (k′ | k). Theoretically, they can have any form
with only two constraints. First, they must be normalized, i.e.∑

k

P (k) =
∑
k′

P (k′ | k) = 1. (33)

Second, all edges must point from one vertex to another, so that no edges
with dangling ends exist in the network. Thus, the total number of edges
pointing from vertices of degree k to vertices of degree k′ must be equal
to the number of edges that point from vertices of degree k′ to vertices
of degree k. In other words, these functions must obey a degree detailed
balance condition:43

kP (k′|k)P (k) = k′P (k|k′)P (k′), (34)

stating the closure of the network through the physical conservation of
edges among vertices. To prove this condition, we will follow an intuitive
derivation.44

Let Nk be the number of vertices of degree k, so that
∑

k Nk = N , where
N is the total number of nodes in the network. In the thermodynamic limit,
we can calculate the degree distribution as a frequency distributiond, that
is,

P (k) ≡ lim
N→∞

Nk

N
. (35)

Additionally, to complete the topological characterization of the network,
we need also to specify how the different degree classes are connected to each
other. To this end, let us consider the symmetric matrix Ekk′ accounting
for the total number of edges between vertices of degree k and vertices of
degree k′ for k �= k′. The diagonal values Ekk are equal to two times the
number of connections between vertices in the same degree class, k = k′.
This matrix meets the following identities:∑

k′
Ekk′ = kNk, (36)∑

k,k′
Ekk′ = 〈k〉N = 2E, (37)

dFor the sake of simplicity, in what follows we will obviate the limit.
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where 〈k〉 is the average degree and E is the total number of edges in the
network. The first identity simply states that the total number of edges
emanating from vertices of degree k is k times the number of vertices in
this degree class. The second identity just states that the sum of the degrees
of all nodes in the network is equal to two times the number of edges.

The first identity allows to write the conditional probability as

P (k′ | k) =
Ek′k

kNk
. (38)

On the other hand, from the second identity we can define the joint degree
distribution as

P (k, k′) =
Ekk′

〈k〉N , (39)

where the symmetric function (2−δk,k′)P (k, k′) is equal to the probability
that a randomly chosen edge connects two vertices of degrees k and k′. The
conditional probability can be easily related to the joint degree distribution,
namely

P (k′ | k) =
〈k〉P (k, k′)

kP (k)
. (40)

The symmetry of P (k, k′) leads directly from the previous equation to
the detailed balance condition:

kP (k′ | k)P (k) = k′P (k | k′)P (k′) = 〈k〉P (k, k′). (41)

The pre-factors k and k′ in this equation account for the multiplicative
nature of networks as random processes and the whole relation stands as
the closure condition for networks with no detached edge ends and with
no isolated vertices. On the technical side, the detailed balance condition
constraints the possible form of the conditional probability P (k′ | k) once
P (k) is given, and vice versa.

Making use of this important relation and the normalization condition,
P (k) can also be written as a function of the joint degree distributione:

P (k) =
〈k〉
k

∑
k′

P (k, k′). (42)

Among all the networks one can consider, Markovian networks are par-
ticularly important.43 This class of network is completely defined by its

eNotice that this relation excludes vertices of degree 0, which are never considered in
real complex networks.
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degree distribution P (k) and the first conditional probability P (k′|k). In
other words, such networks belong to a statistical ensemble which is max-
imally random under the constraint of having a given degree distribution
and a given first conditional probability. In this case, the joint distribu-
tion P (k, k′) conveys all the relevant topological information since both
P (k) and P (k′|k) can be derived from it. In turn, all higher-order correla-
tions can also be expressed as a function of these fundamental functions.
In particular, the three vertices conditional probability can be written as
P (k′, k′′|k) = P (k′|k)P (k′′|k) and the same applies to higher order correla-
tion functions.

The meaning of the term Markovian network that we use in this chapter
is borrowed from the theory of Stochastic Processes. In this field, a stochas-
tic process X(t) is called Markovian if the probability to find the process
at the position X(t) = x at time t only depends on its position at the
previous time t′ < t. Then, the process is completely characterized by the
probability density function p(x, t) of being at x at time t and the transition
probability density p(x, t|x′, t′) of being at x at time t, provided that the
process was at x′ at time t′. If we identify P (k) with p(x, t) and P (k′|k)
with p(x, t|x′, t′), we can define Markovian networks in a similar manner.
One can force even more the analogy and find another connection between
Markovian networks and Markovian stochastic processes. Suppose, for in-
stance, a particle that randomly diffuses through the network, uniformly
choosing at each time step one of its neighbors to continue its walk. If the
underlying network is Markovian, the stochastic process constructed from
the sequence of degrees of the visited vertices follows a Markovian jump
process with a transition probability given by P (k|k′) and a steady state
distribution given by kP (k)/〈k〉. Notice that the meaning of Markovian
network should not be confused with the notion of Markov graph.45

3.3. Empirical measurement of correlations

At the level of two vertices degree correlations, the most straightforward
measure consists in a direct inspection of the two-dimensional histograms
of the joint degree distribution P (k′, k)46,47 or the conditional probability
P (k′ | k). However, such histograms in finite size systems are highly affected
by statistical fluctuations and are thus not good candidates to evaluate em-
pirical correlations. In order to characterize degree correlations, it is then
more convenient to adopt other standards, which nevertheless will eventu-
ally depend on these functions. A most useful approach consists in defining
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a one-parameter function encoding the signature of correlations. In the case
of two vertices correlations, such function is defined as the average nearest
neighbors degree (ANND) of nodes with degree k, k̄nn(k).48 It considers
the mean degree of the neighbors of a vertex as a function of its degree k.
When this function increases with k, the network is named assortative, with
vertices associating preferentially to other vertices of similar degree. When
k̄nn(k) instead decreases, the network is named disassortative, with high-
degree vertices attaching preferentially to other low-degree ones. Hence, this
is a representation which gives a clear interpretation of pair correlations and
at the same time can provide further information about hierarchical orga-
nization in networks. Finally, the scalar Pearson correlation coefficient of
the degrees of vertices at the ends of edges is used to summarize the level
of correlation with a single numberf .41,42

Despite the increasing attention in the literature about the measurement
of P (k′, k), the first correlation observable appearing in the literature is the
network transitivity or clustering coefficient,6,7 a scalar which quantifies the
probability that two vertices with a common neighbor are also connected to
each other. This concept has its roots in sociology and, in the language of
social networks, it measures the likelihood that the friend of your friend is
also your friend. Therefore, it is in fact a measure of three vertices correla-
tions although, curiously, it is among the first studied structural properties
of networks, together with the small-world effect or the degree distribution.
This definition and other alternatives49,50 have been broadly used to quan-
tify in a statistical sense the deviation of real networks, strongly clustered,
from the behavior of classical random graphs.

Since clustering measures triangles in a network, it seems also natural to
pose the question of how to measure higher order loops (closed paths). This
issue is particularly important in order to asses if a network can be assumed
to be Markovian, since, in this case, the loop structure must be very well
described by the two vertices correlations. A number of authors have paid
attention to loops of length four and above. However, there are technical
difficulties when one tries to separate the independent contributions of the
different motifs.51–55 This is the main reason why triangles –and not higher
order loops– have been chosen as a measure of correlations.

In this section we will concentrate on the broadly accepted and used
statistical correlation observables in the analysis of large scale networks,

fThe Pearson coefficient is computed as the correlation coefficient of the joint distribution
P (k, k′).
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the average nearest neighbors degree and the degree dependent clustering
coefficient, focusing on their theoretical grounds and significance.

3.3.1. Two vertices correlations: ANND

The average nearest neighbors degree, k̄nn(k), of vertices of degree k is
defined as a smoothed conditional probability:48

k̄nn(k) =
∑
k′

k′P (k′ | k), (43)

so that the statistical fluctuations that usually disturb the evaluation of
P (k′ | k) are damped.

Real networks usually tend to display one of two different patterns:
either k̄nn(k) is a monotonous increasing function of k or, on the contrary,
it is a monotonous decreasing function of k. At the level of correlation
properties, this segregation allows the classification of networks based on
their ANND behavior:41

• Assortative networks exhibit k̄nn(k) functions increasing with k,
which denotes that vertices are preferentially connected to other
vertices with similar degree. Examples of assortative behavior are
typically found in many social structures.

• Disassortative networks exhibit k̄nn(k) functions decreasing with
k, which implies that vertices are preferentially connected to other
vertices with very different degree. Examples of disassortative be-
havior are typically found in several technological networks, as well
as in communication and biological networks.

This measure provides a sharp evidence for the presence or absence
of correlations since, in the case of uncorrelated networks, it is easy to
demonstrate that this quantity should not depend on k. In fact, the un-
correlated ANND value is found to coincide with the heuristic parameter
κ = 〈k2〉/〈k〉, independently introduced to characterize the level of het-
erogeneity of networks.12 For homogeneous networks κ ∼ 〈k〉, whereas for
scale-free (SF) networks with unbounded degree fluctuations it diverges in
the thermodynamic limit. As a consequence, it comes to be a key parameter
characterizing the properties of networks and the processes running on top
of them.

Here, we deduce k̄unc
nn (k) from the detailed balance and the normaliza-

tion conditions. Summing Eq. 41 over k and recalling that Punc(k′|k) does
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not depend on this variable, we obtain that

Punc(k′|k) =
k′P (k′)
〈k〉 , (44)

from where we have

k̄unc
nn (k) =

〈k2〉
〈k〉 . (45)

Therefore, a function k̄nn(k) showing any explicit dependence on k signals
the presence of degree correlations in the system.

As in the case of uncorrelated networks, it is also possible to derive some
general exact results concerning the behavior of k̄nn(k) in the case of SF
networks with a degree distribution of the form P (k) ∼ k−γ for k ∈ [1, kc].
The cut-off value kc is a consequence of the finiteness of the network and
diverges in the thermodynamic limit.56 The specific dependency of kc on
N depends, in general, on the details of the model. Let once again exploit
the detailed balance and the normalization conditions. By multiplying by
a k factor both terms of Eq. 41 and summing over k′ and k up to kc, we
obtain

〈k2〉 =
∑
k′

k′P (k′)
kc∑
k

kP (k | k′) =
∑
k′

k′P (k′)k̄nn(k′, kc), (46)

where we have made explicit the dependence on kc. In scale-free networks
with exponent 2 < γ < 3 the second moment of the degree distribution
diverges as 〈k2〉 ∼ k3−γ

c , and therefore∑
k′

k′P (k′)k̄nn(k′, kc) ∼ A

3 − γ
k3−γ

c , (47)

where A is a constant pre-factor depending on the details of P (k). As a
consequence, the left hand side of this equation must bear divergencesg.

In the case of disassortative correlations, the divergence should just be
contained in the kc dependence of k̄nn(k′, kc), since k̄nn(k′, kc) is decreasing
in k′ and furthermore k′P (k′) is an integrable function.

When correlations are assortative, however, there may be singularities
associated with the sum over k′ depending on the rate of growth of the
increasing k̄nn(k′, kc). Nevertheless, it can be demonstrated that, even for
strong growth rates, the divergence associated to the explicit kc dependence
is predominant.56

gFor γ = 3 the arguments are still valid although more involved.
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Therefore, one can conclude, just from the detailed balance and the
normalization conditions, that in SF networks with 2 < γ ≤ 3 the function
k̄nn(k′, kc) must diverge when kc → ∞ in a nonzero measure set, regardless
of the character and level of the correlations present in the network. This
fact is, for instance, fundamental in determining the properties of epidemic
spreading processes in correlated scale-free networks.56

From a practical point of view, when studying real SF networks, one can
always take advantage of the fact that the divergence of the function ANND
is independent of the underlying correlation structure, so that k̄nn(k) can
be always normalized by the uncorrelated value k̄nn(k)unc = 〈k2〉

〈k〉 . This
finite size correction makes comparable the ANND functions of different
real networks.

As we have mentioned at the beginning of this section, it is also pos-
sible to obtain information on the nature of two vertices correlations by
examining a single scalar quantity, the Pearson correlation coefficient of
the degrees of the vertices at the end of edges.41 The Pearson coefficient r

can be defined as follows:

r =
〈kk′〉e − 〈k〉2e
〈k2〉e − 〈k〉2e

, (48)

where 〈kk′〉e is the average of the product the degrees at the end points of
all edges and 〈kn〉e is the average of the n-th power of the degree at the end
of any edgeh. These averages can be expressed in terms of the joint degree
distribution as

〈kk′〉e =
∑
kk′

kk′P (k, k′), (49)

〈kn〉e =
∑
kk′

kn + k′n

2
P (k, k′). (50)

Using the detailed balance condition Eq. 41, we obtain the following relation
between the Pearson coefficient and the ANND function

r =
〈k〉∑k k2k̄nn(k)P (k) − 〈k2〉2

〈k〉〈k3〉 − 〈k2〉2 (51)

hIn the original definition,41 r was defined in terms of the averages of the excess degree,
that is, discounting the connection from the considered edge. It is easy to see, however,
that both definitions yield the same result.
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For uncorrelated networks, with k̄unc
nn (k) = 〈k2〉/〈k〉, we obtain r = 0,

while r < 0 (r > 0) is interpreted as a signature of dissasortative (assorta-
tive) two vertices correlations. While the Pearson coefficient can be useful
to give a single value measure of the character of correlations, its efficiency
suffers from some drawbacks as compared with the ANND function. On the
one hand, it misses the possible hierarchical structure of correlations that
is explicitly evident in the k dependence of the ANND. On the other hand,
for SF networks it strongly depends on the size of the network. To see this,
consider a dissasortative SF network with 2 < γ < 3 and degree cut-off kc.
In this case, we have 〈kn〉 ∼ kn+1−γ

c . Since the network is dissasortative,
r < 0 and we have 〈k〉∑k k2k̄nn(k)P (k) < 〈k2〉2, so at leading order

|r| ∼ 〈k2〉2
〈k3〉 ∼ k2−γ

c , (52)

which tends to zero in the thermodynamic limit for 2 < γ ≤ 3. This in-
dicates that one has to be very cautious when drawing conclusions about
the nature of correlations in SF networks based only on the information
provided by the Pearson coefficient.

To finish this section, we discuss another consideration that must be
taken into account, and which refers to the distinction between the purely
uncorrelated case and the maximally random case achievable when respect-
ing the degree distribution. It turns out that completely uncorrelated net-
works are not always feasible due to architectural constraints. Given a cer-
tain degree distribution P (k), finite size effects could condition in some
cases the closure of the network to either the presence of multiple and self-
connections or disassortative two vertices correlations.84–86 Bounded degree
distributions, in which 〈k2〉 is finite, present maximum degree values kc be-
low or around a structural cut-off ks, so that physical networks can indeed
be constructed as uncorrelated. However, when dealing with unbounded
degree distributions and diverging fluctuations in the infinite network size
limit (for instance, scale-free degree distributions with 2 < γ < 3 as ob-
served in many real systems), kc > ks and then structural correlations
are important and cannot be avoided. In that case, one can just consider
the maximally random network with a given degree distribution P (k). For
bounded degree distributions with actual cut-offs below the structural one,
the maximally random network will indeed correspond to the uncorrelated
case. However, for unbounded degree distributions with divergent second
moment and actual cut-off well above the structural one, the closure of the
maximally random network forces the conservation of structural correla-
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tions. Whereas correlation measures provide information about the overall
presence of correlations in the network, the comparison with the maximally
random case discounts the structural effects, so that physical correlations
can be detected.

3.3.2. Three vertices correlations: Clustering

Correlations among three vertices can be measured by means of the condi-
tional probability P (k′, k′′ | k) that a vertex of degree k is simultaneously
connected to two vertices with degrees k′ and k′′. Only in the case of Marko-
vian networks, this function can be expressed in terms of two vertices cor-
relations through the relation P (k′, k′′ | k) = P (k′ | k)P (k′′ | k).

As previously indicated, the conditional probabilities P (k′, k′′ | k) or
P (k′′ | k) are difficult to estimate directly from real data, so other assess-
ments have been proposed. All of them are based in the concept of clus-
tering, which refers to the tendency to form triangles (loops of length 3) in
the neighborhood of any given vertex.

The clustering in a network quantifies the likelihood that vertex j is
connected to vertex l, if vertices j and l are simultaneously connected to
vertex i. Watts and Strogatz originally proposed a scalar local measure for
clustering, which is known as the clustering coefficient.6 It is computed for
every vertex i as the ratio of the number of edges ei existing between the
ki neighbors of i and the maximum possible value, i.e.:

ci =
2ei

ki(ki − 1)
. (53)

The clustering coefficient of the whole network C is then defined as the
average of all individual ci’s, C =

∑
i ci/N . Watts and Strogatz also pointed

out that real networks display a level of clustering typically much larger
than the value for a classical random network of the same size, Crand =
〈k〉/N .

The clustering coefficient has been redefined in a number of ways, for
instance as a function of triples in the network (triples are defined as sub-
graphs which contain exactly three nodes) and reversing the order of average
and division in Eq. 53:49,57

C∆ =
3 × number fully connected triples

number triples
. (54)

This definition corresponds to the concept of the fraction of transitive triples
introduced in sociology long time ago.7
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Although overall scalar measures are helpful as a first indication of clus-
tering, it is always more informative to work with quantities which explicitly
depend on the degree. As in the case of two vertices correlations, an uni-
parametric function c̄(k)50 can also be computed. In practice, the degree-
dependent local clustering c̄(k) is calculated as the clustering coefficient
averaged for each degree class k. Formally, it is defined as the probability
that two vertices, neighbors of a vertex of degree k, are linked to each other.
Hence, it can be written as a function of the three vertices correlations:

c̄(k) =
∑
k′,k′′

P (k′, k′′ | k)rk′k′′(k), (55)

where rk′k′′ (k) is the probability that the vertices of degree k′ and degree
k′′ are connected given that they both are neighbors of the same vertex of
degree k. The corresponding scalar measure is the mean clustering coeffi-
cient

c̄ =
∑

k

P (k)c̄(k), (56)

which is related to the clustering coefficient byi:

C =
c̄

1 − P (0) − P (1)
. (57)

For Markovian networks, c̄(k) can be expressed as a function of the two
vertices degree correlations, giving the asymptotic expression:58,59

c̄(k) =
〈k〉3

Nk2P 2(k)

∑
k′,k′′>1

(k′′ − 1)(k′ − 1)P (k′′, k′)P (k′′, k)P (k′, k)
k′k′′P (k′)P (k′′)

. (58)

In the case of uncorrelated networks, c̄(k) is independent of k. Furthermore,
all the measures collapse and reduce to C.58,60,61

c̄(k) = C = C∆ =
1
N

(〈k2〉 − 〈k〉)2
〈k〉3 . (59)

Therefore, a functional dependence of the local clustering on the degree
can be attributed to the presence of a complex structure in the three vertex
correlation pattern. Indeed, it has been observed that c̄(k) exhibits a power-
law behavior c̄(k) ∼ k−α for several real scale-free networks. Hence, c̄(k)
has been proposed as a measure of hierarchical organization and modularity
in complex networks.62

iNotice that we have implicitly assumed that c̄(0) = c̄(1) = 0 whereas in the definition
of C we only consider an average over the set of vertices with degree k > 1. This fact
explains the difference between both measures.
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3.4. Networks in the real world

Degree correlations are ubiquitous in real networks, denoting the presence
of structural organization and hierarchy. Usually, empirical networks show
a highly clustered architecture and two vertices correlations are present
as well, which demonstrates that nodes in networks do not mix randomly.
What is more, among a number of theoretical possibilities, pair correlations
commonly display one out of only two well-defined mixing patterns. As
discussed, this observation has led to the segregation of most real networks
into two universality classes, assortative and disassortative, depending on
whether their ANND function is an increasing or a decreasing function of
k, respectively.

Empirical networks are often classified in several loose general categories
as well, and within a given class most networks are found to display the
same type of correlations.42 Indeed, among other specific features, many
social networks are assortative,41,63,64 such as, for instance, company direc-
tor networks,65 co-authorship and collaboration networks,66–68 or the net-
work of email address books.69 On the contrary, most biological networks
(protein-protein interaction network in the yeast cell,70 metabolic networks
in bacteria,71 food webs72) or technological networks (the Internet at the
Autonomous System level,12 the network of hyperlinks between pages in
the World Wide Web,73 etc.) appear to be disassortative. In some cases, it
is difficult, if not impossible, to classify real networks into single categories,
especially for systems related to human action or when functionality is also
taken into account. Since different sets of classification criteria can be de-
fined, and although in some cases classifications are unquestionable, here
we prefer to treat specific examples instead of whole categories in order to
avoid any potential conflict. Next, we will examine the details concerning
correlations of a number of well-known and representative real networks.

Protein interaction networks

Biological structures are among the most complex systems that can be rep-
resented as networks, and simplified models turn out to be very useful to
understand how they organize and evolve. Cells themselves are very intri-
cate systems comprising millions of molecules acting in a coherent manner
as open systems exchanging matter, energy and information with the envi-
ronment. Therefore, the cellular network, albeit one, is commonly reduced
to three different sub-webs: the metabolome, or the ensemble of all metabo-
lites and the reactions that they enter, the genome, or the set of all genes
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Fig. 11. Assortative real networks. The average nearest-neighbor degree is shown in the
column on the left scaled by the heterogeneity parameter κ. The column on the right
exhibits the clustering coefficient as a function of the vertex degree. PGP is the Pretty-
Good-Privacy web of trust between users of digital communications, SCN stands for
the scientific collaboration network of researchers co-authoring academic papers in the

cond-mat e-Print archive, and WAN is the world-wide airport transportation network.
For the data publicly available visit the site http://www.cosin.org.
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Fig. 12. Disassortative real networks. The average nearest-neighbor degree is shown
in the column on the left scaled by the heterogeneity parameter κ. The column on the
right exhibits the clustering coefficient as a function of the vertex degree. AS stands
for the Internet map at the Autonomous System level, PIN is the protein interaction
network of the yeast S. Cerevisiae, and WTW is the world trade web of commercial
exchanges between countries in the world. For the data publicly available visit the site
http://www.cosin.org.
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in a cell which can interact by affecting each other’s level of expression,
and the proteome, or group of proteins and their interactions by physical
contact. Metabolic webs and protein interactions networks (PINs) are bet-
ter known for the most simple cells, such as the yeast S. Cerevisiae or the
bacteria E. Coli. Although different data sets can provide varying results,
there is enough evidence to ensure that these networks exhibit a nontrivial
topological structure with a statistical abundance of hubs and presence of
correlations.

Here, we inspect in more detail the PIN of the yeast S. Cerevisiae con-
structed from data, obtained with different experimental techniques, at the
Database of Interacting Proteins (http://dip.doe-mbi.ucla.edu).74 The net-
work has 4713 proteins and 14846 interactions for data collected until April
2003. The degree distribution is heavy tailed, with a power-law of exponent
γ 
 2.5 and an exponential cut-off. A signature of hierarchy is the disas-
sortative behavior of its ANND function, as shown in Fig. 12. For most
values of k the decay is power-law like with an exponent ∼ 0.24. On the
other hand, the degree-dependent clustering coefficient does not show a
clear functional form. However, the value of the clustering coefficient C for
the whole network is 0.09, five times larger than the corresponding value
for a comparable random graph. This suggests the presence of structural
organization.

Scientific collaboration network

The organization of social communities has been an extensively studied
topic in social sciences. Recently, however, it has been possible to take ad-
vantage of the progress made in Information Technology to access and man-
age extensive and reliable data sets in various kind of social structures, for
instance clubs, organizations, or collaborative teams. Among others, pro-
fessional communities have been analyzed from large databases as complex
collaboration networks. Examples are the already classic collaboration net-
work of film actors,68 the company directors network65 and the network of
co-authorship among academics.66,67 These are in fact bipartite networks,7

although the one mode projection is usually used so that members are tied
through common participation in one or more films, boards of directors, or
academic papers.

As an illustration, here we consider the scientific collaboration network
(SCN) reconstructed from the submitted papers to the condensed matter
physics section of the e-Print Archive (http://xxx.lanl.gov/archive/cond-
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mat) between 1995 and 1998. The network has 15179 scientists with an
average number of collaborators 〈k〉 = 5.67. The analysis of correlations
confirms the commonly accepted expectations for social networks. The pres-
ence of assortative pair correlations is denoted by the increasing trend of
the function k̄nn(k) in Fig. 11, which indicates that researchers with a rel-
atively large number of collaborators tend to be connected among them.
The mean clustering coefficient is very high with a value of c̄ = 0.64. Fur-
thermore, the degree-dependent local clustering follows a clear decay with
increasing k, indicating the existence of some hierarchy50 or modularity.62

3.4.1. Pretty-good-privacy web of trust

The web of trust75 between users of the Pretty-Good-Privacy (PGP) en-
cryption algorithm76,77 is one of the largest reported non-bipartite graphs
one can build from a social network emerging in the technological world.
On the technical side, the PGP software encrypts files or email messages
which may only be opened by the intended recipients. Moreover, it allows
to protect also identities. The sender of a digital communication signs the
outgoing document so that the recipients know for certain who the author
is. The cryptographic system uses two keys associated to each user, a pub-
lic key known to everyone and a private or secret key known only to the
recipient of the message. The public and private keys are related in such a
way that only the public key can be used to encrypt messages and only the
corresponding private key can be used to decrypt them, being computa-
tionally infeasible to deduce one key from the other. When A wants to send
a secure message to B, it must use B’s public key to encrypt the message.
B then uses its private key to decrypt it.

Provided that pairs of keys can be generated by everyone, users should
verify that a given key belongs really to the person stated in the key. This
requires authentication of the public key, which implies a signing procedure
where a person signs the public key of another, meaning that she trusts the
other person is who she claims to be. This procedure generates a web of
peers that have signed public keys of another based on trust, the so-called
web of trust of PGP.

The undirected web of trust (with an edge between peers who have
mutually signed their keys) as it was on July 2001 (http://www.dtype.org)
comprises 57243 public keys and its average degree is 〈k〉 = 2.16. It shows
a scale-free degree distribution with an exponent γ = 2.6 for small degrees
k < 40, and a crossover towards another power law with a higher exponent,
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∼ 4, for large values of the degree. This indicates that, in contrast to many
technological networks or social collaboration networks, the PGP is not a
scale-free network but has a bounded degree distribution.

However, as for many other social networks, it shows assortative mix-
ing and a large clustering coefficient C = 0.4.75 In Fig. 11 we analyze the
correlations of the PGP network as measured by the function k̄nn(k). The
growing trend confirms the assortative character of the connections be-
tween users. Remarkably, the function k̄nn(k) has an approximately linear
behavior, at least for not very large values of k. In Fig. 11, we also plot
the clustering coefficient as a function of the degree, c̄(k). Despite the short
range of values of k shown in the plot (due to the limited size of the network
and the bounded nature of the degree distribution), we can observe that
c̄(k) is a nearly independent function of the degree for most k values. This
absence of structure is surprisingly in contrast to many other real networks
in which c̄(k) has been shown to be a decreasing function of the degree.62

The internet at the autonomous system level

The Internet has become a paradigm in complex networks science. Its
own organization as a networked system of physical connections between
computers makes the graph abstraction a natural representation. How-
ever, its intricate ever-evolving structure forces to opt for coarse-grained
descriptions so that it is usually examined at the level of routers (spe-
cial devices that transfer the packets of information across the Internet’s
different networks) or at the level of Autonomous Systems (ASs) (which are
defined as independently administered domains which autonomously deter-
mine internal communication and routing policies for Internet communi-
cations12). Several projects, CAIDA (http://www.caida.org/) and DIMES
(http://www.netdimes.org/) among others, have been gathering and ana-
lyzing data on the Internet at different levels. In particular, measurements
on the Internet structure and topology allow to recreate maps that display
connectivity information.

Here, we review one of these Internet maps, which reconstructs the Inter-
net topology at the AS level, from data collected by the Oregon route-views
project (http://www.routeviews.org/). The map is dated May 2001 and
comprises 11174 nodes with an average degree 〈k〉 = 4.2. Statistical mea-
sures on this map provide evidence of the large-scale heterogeneity of the
Internet, characterized by the small-world property and a scale-free degree
distribution with exponent γ 
 2.1. It also clearly reveals its hierarchical
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structure. More precisely, degree-degree correlations are strongly disassor-
tative and exhibit a heavy tail that can be fitted by a power-law decay with
a characteristic exponent close to 0.55, as shown in Fig. 12. The clustering
coefficient c̄(k) for nodes of degree k is also displayed. The power-law be-
havior is not so sharp in this case, but nevertheless the curve also shows a
very clear heavy tail. The scalar clustering coefficient is C = 0.3.48,50,78 All
these features rule out the possibility of a purely random graph structure
or a regular architecture.

The world airport network

The World Airport Network (WAN)79 is a representative example of a large
transportation infrastructure which can be examined under the perspective
of complex networks theory. At the level of functionality, the WAN is also
a communication network bringing passengers from one side of the world
to another.

The database of the International Air Transportation Association
(http://www.iata.org) compiles information about direct flights between
world airports, and the number of available seats in each flight. For the
year 2002, a network with 3880 nodes and 18810 edges can be reconstructed
from the data. The topology of the network exhibits the small-world prop-
erty and a scale-free degree distribution of exponent γ 
 2, which presents
an exponential cut-off induced by physical restrictions in the number of
connections that a single airport can handle.

Regarding correlations, the topological k̄nn(k) in Fig. 11 surprisingly
shows assortative behavior for small degrees and a plateau for higher de-
grees, which denotes the absence of noticeable topological correlations for
large k’s. This picture changes notably if the weighted character of the
network is taken into account. Then, the ANND function appears to be as-
sortative in the whole k spectrum. With reference to clustering, low degree
vertices present a much higher interconnected neighborhood than hubs, as
can be seen in Fig. 11 showing a decaying c̄(k). That means that large
airports act as bridges on the international and intercontinental scale. The
weighted version follows the same trend with a much more limited decay.

The world trade web

The network of trade relationships between different countries in
the world can be classified as an economic system where the ac-
tivity is governed by optimization criteria and competition and co-
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operation forces. Publicly available import, export, and gross do-
mestic product databases (http://www.intracen.org/menus/countries.htm,
http://www.tswoam.co.uk/world) provide the information to analyze the
international trade system as a complex network. Nodes in the world trade
web (WTW)80 represent countries and edges appear between them when-
ever a commercial channel exists. Despite its relatively small size (N = 179
and 〈k〉 
 18 in the undirected version) this socioeconomic structure dis-
plays the typical properties of complex networks, namely, the small-world
property and scale-free degree distribution with γ 
 2.6 for high degrees.

Correlations also match clear patterns and reflect a discerning hierarchi-
cal organization, where countries that belong to influential areas connect to
other influential areas through hubs. As can be observed in Fig. 12, the func-
tion k̄nn(k) clearly depend on k, with a power law decay of exponent 
 0.5.
This result means that the WTW is a disassortative network where highly
connected countries tends to connect to poorly connected ones. There exists
a high positive correlation between the number of trade channels of a coun-
try and its wealth (measured by the per capita Gross Domestic Product)
so that, as expected, highly connected nodes correspond to rich countries
and poorly connected nodes to poor ones. The socio-economic implication
of disassortativity is then that poor countries do not trade to each other
but they do that only with rich countries. Hierarchy is also reflected by the
high level of local cohesiveness. Fig. 12 shows the clustering coefficient of
the undirected WTW as a function of the vertex degree. As is distinctly
seen, this function has a strong dependence on k, with a power law behav-
ior of exponent 
 0.7. The clustering coefficient averaged over the whole
network is C = 0.65, greater by a factor 2.7 than the value corresponding
to a random network of the same size. Surprisingly, these results point to a
high similarity between the WTW and other completely different types of
networks, for instance the Internet.

3.5. Modeling correlations

All the empirical evidences reported in the previous section about the hi-
erarchical architecture of real networks should be included in models aim-
ing to help us to understand how these complex systems self-organize and
evolve. Models that neglect correlations will inevitably fail to trustworthy
recreate actual systems. In this section, we will review how disassortative
correlations arise in the classical configuration model and in scale-free grow-
ing networks as a by-product. Then, we will go over recent efforts in the
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construction of models attending to correlations. Some of them are intended
to reproduce specific correlation behaviors and others, more ambitious, are
devoted to set up a general framework to study the origin of correlations
in random networks.

3.5.1. Disassortative correlations

Models reproducing disassortative correlations can be divided into two main
classes referring to static and dynamic algorithms. In the first category, the
classical configuration model81–83 provides correlations for scale-free degree
distributions although, a priori, it was supposed to generate uncorrelated
networks. In the second group, growing scale-free networks display disas-
sortative correlations between the degrees of neighboring vertices, which
spontaneously appear as a consequence of the asymmetry in the history of
nodes introduced at different times.

3.5.2. The configuration model

The configuration model (CM) is a classical algorithm to construct random
networks with a specific degree distribution P (k) settled a priori. This is
a static model where the total number of nodes in the network N remains
constant. For each one of these nodes, a random number ki is drawn from
the probability distribution P (k) and is assigned to it in the form of stubs
or ends of edges emerging from that vertex. Several constraints apply. The
first one states that no vertex can have a degree larger than N − 1. The
second is that the sum

∑
i ki must be even and is imposed by the closure

condition. The network is constructed by connecting pairs of these edge
ends chosen uniformly at random. The result of this assembly is a random
network with degrees distributed according to P (k), by definition.

Given the random nature of the assignment of stubs, it was expected
that the ensuing network was uncorrelated, and it is in fact the case if
the degree distribution is bounded or multiple connections and tadpoles
(self-connections) are allowed. On the other hand, the CM indeed generates
disassortative correlations when fluctuations diverge in the infinite-network-
size limit, for instance, when the expected degree distribution is scale-free
with exponent 2 < γ ≤ 3, and no more than one edge is allowed between
any two vertices.47,84

If the degree distribution has a finite second moment 〈k2〉, the frac-
tion of multiple edges and tadpoles resulting from the construction process
vanishes in the thermodynamic limit and, as a consequence, they can be



June 6, 2007 9:49 WSPC/Trim Size: 9in x 6in for Review Volume book
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neglected. For scale-free degree distributions with exponent 2 < γ ≤ 3, the
weight of these multiple edges with respect to the overall number of edges
is small but cannot be ignored since they are not evenly distributed among
all the degree classes. In the thermodynamic limit, a finite fraction of mul-
tiple edges and tadpoles will remain among high degree vertices.85 There
are theoretical and technical reasons to try to avoid multiple edges in some
instances, but imposing the restriction on the algorithm that multiple edges
are prohibited originates the presence of disassortative correlations.47,84

The origin of this phenomenon can be traced back to be a cut-off effect,85

with the maximum degree ruling the presence or absence of correlations in
a random network with no multiple or self-connections. These facts have
been taken into account in the construction of a procedure, the uncorrelated
configuration model,86 to generate uncorrelated scale-free networks with no
multiple and self-connections.

3.5.3. Growing models

Real networks, as everything else in the world we experience, are far from
being static. Their evolution is relevant, specially when the time scale of the
occurrence of structural changes in the network is of the same magnitude of
the characteristic time associated to processes taking place on top of them.
Therefore, dynamic models are more appropriate to describe reality and
they can further contribute to the understanding of the mechanisms that
shape the topological properties of complex networks.

These dynamical models are typically devised as growing networks mod-
els, where nodes and edges are gradually added to the network and con-
nected following specific attachment rules. This kind of theoretical con-
struction has succeed in explaining the scale-free structure observed in real
nets applying mechanism such as the preferential attachment rule.87

A number of authors have worked out analytic studies on this sort of
networks. All of them are centered on solving the basic dynamical equa-
tions governing the network evolution and take the network size N(t) as
the natural time scale. Aside the degree distribution and other first order
properties, degree correlations have also been examined.58,88,89 Before go-
ing into further details, let us first briefly revise the standard procedure
which assembles this sort of networks:

• At each time step, a new node with m edges is added to the net-
work.

• Ends of the new edges are distributed among old vertices. Each
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vertex i has a probability Π(ki) of getting new edges, where ki is
its degree.

In the original Barabási-Albert model,87 the probability Π(ki) is propor-
tional to ki, and the system evolves into a steady power-law degree distri-
bution with the form P (k) ∼ k−3. Many variations have been introduced.
In particular, the preferential attachment probability has been generalized
and allowed to grow more slowly or faster than linearly with the degree.
Only in the linear case, the ensuing degree distribution is power-law, but
its exponent can be modulated by introducing an additional constant fac-
tor in the attachment probability, i.e., Π(ki) = ki + A. Then, a scale-free
degree distribution of the form P (k) ∼ k3+A/m is obtained,90 which for the
range of values −m < A < ∞ yields degree exponents 2 < γ < ∞ Other
ingredients can be incorporated in order to account for a power-law degree
distribution of exponent 2 < γ < 3, such as edge disappearance91 or wiring
processes.92 Summarizing, the class of growing scale-free networks models is
described by power-law degree distributions of the form P (k) ∼ kγ , with an
average degree at time t given by 〈k(t, t′)〉 ∼ (t/t′)β , for a node introduced
at time t′. The exponents γ and β are related through γ = 1 + 1/β.

As the network grows, it can be proved that correlations between the
degrees of neighboring vertices spontaneously appear. The first theoretical
derivation of this result93 was obtained by calculating the number of nodes
of degree k attached to an ancestor node of degree k′. In the framework of
the rate equation approach, this joint distribution does not factorize so that
correlations exit. This characterization of degree correlations is indeed mea-
suring P (k, k′). With respect to measures of the average nearest neighbors
degree function, it is found that, in the large k limit,

k̄nn(k) ∼ N (3−γ)/(γ−1)k−(3−γ) (60)

for γ < 3. That is, two vertices correlations are disassortative and charac-
terized by a power-law decay.58,88 On the other hand, it can also be proved
that for γ = 3, the ANND function converges to a constant value inde-
pendent of k and proportional to lnN , and therefore, the Barabási-Albert
model lacks appreciable correlations.

3.5.4. Assortativity generators

Unlike disassortative correlations, which are inherent to the very construc-
tion of some general models, assortative correlations must be specifically
forced. The special character of this type of mixing is also patent in the
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implications for issues such as percolation or network resilience. Extensive
numerical simulations show that assortative networks percolate more easily
than disassortative ones. Concerning resilience, simulations also prove that
assortative networks display robustness through redundancy against target-
ing hubs, since high degree vertices tend to be clustered together in groups
of high cohesiveness. On the contrary, such attacks are much more effective
in disassortative networks, where hub connections are broadly distributed.

The basic model generating assortative networks41,42 proposes a spe-
cific Monte Carlo sampling scheme equivalent to the Metropolis-Hasting
method.94 The degree distribution can be computed from the distribution
of excess degrees q(ke)j, which on its turn must be calculated from a given
edge distribution e(ke, k

′
e) representing the fraction of edges in the network

between nodes with excess degree ke and nodes of excess degree k′
e:

q(k) =
∑
k′

e(k′, k) (61)

P (k) =
q(k − 1)/k∑
k′ q(k′ − 1)/k′ , (62)

where nodes of degree zero are not considered. Once the degree distribution
is known, the classical configuration model81–83 can be applied to assemble
the network. The algorithm generating the assortative mixing works then
in two repeated steps:

• Two edges are selected at random, named (1, 2) and (3, 4) after
the vertices they connect. The excess degrees q1, q2, q3, q4 of those
vertices are calculated.

• The two edges (1, 2) and (3, 4) are replaced by the new
ones (1, 3) and (2, 4) with probability 1 if e(q1, q3)e(q2, q4) ≥
e(q1, q2)e(q3, q4). Otherwise, the swap is performed with probability
p = [e(q1, q3)e(q2, q4)]/[e(q1, q2)e(q3, q4)].

Finally, the correlation structure of the resulting network will depend on
the choice of e(k′, k). A uniparametric assortative family can be obtained
from

e(k′, k) = q(k)q(k′) + rσ2
qm(k, k′), (63)

where σq is the standard deviation of the distribution q(k), m(k, k′) is
any symmetric matrix that has all rows and columns sums zero and is
normalized, and the parameter r is the assortative coefficient.

jThe excess degree is defined as ke = k − 1.
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3.5.5. Modeling clustered networks

When it was realized that correlations were unavoidable in an accurate
characterization of real networks, most modeling efforts merely focused on
the reproduction of two point correlations typified by the average nearest
neighbors degree. This finds a justification in the fact that many models are
assumed to observe the Markovian property, not only because analytic anal-
ysis simplifies but also because several real networks, such as the Internet at
the Autonomous System level, indeed share this attribute.55 These systems
are those whose topology is completely defined by the degree distribution
P (k) and the first conditional probability P (k | k′), so that all higher-order
correlations can be expressed as a function of these two. Some examples
of these types of models will be discussed in the following subsection, and
the analytic expression for the degree-dependent clustering coefficient will
be provided there along with the ANND function. Nonetheless, all these
Markovian models fail to maintain clustering in the thermodynamic limit.
An independent modeling of clustering is thus required.

The simplest more general approach follows the philosophy of the config-
uration model, which gives maximally random networks with a given degree
distribution P (k). Instead of fixing P (k), one could fix the function P (k, k′)
so to construct a network with an expected two vertices degree correlations
and otherwise maximally random. It can be demonstrated that the cluster-
ing of these networks again vanishes in the thermodynamic limit without
exception. However, scale-free networks with divergent second moment de-
serve special attention once more. The decay of their clustering with the
increase of the network size is so slow that relatively large networks with
an appreciable high cohesiveness can be obtained.

Growing linear preferential attachment models also yield vanishing c̄(k)
in the thermodynamic limit, from which new variations are needed in order
to recreate the empirically observed values. As an illustrative example of
the prescriptions that have been used to generate clustering in scale-free
growing networks, one of the proposed models95 reproduces a large cluster-
ing coefficient by adding nodes which connect to the two extremities of a
randomly chosen network edge, thus forming a triangle. The resulting net-
work has the power-law degree distribution of the Barabási-Albert model
P (k) ∼ k−3, with 〈k〉 = 4, and since each new vertex induces the creation
of at least one triangle, the model generate networks with finite clustering
coefficient. A generalization on this model88 which allows to tune the av-
erage degree to 〈k〉 = 2m, with m an even integer, considers new nodes
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connected to the ends of m/2 randomly selected edges. Two vertices and
three vertices correlations can be calculated analytically through a rate
equation formalism. The average nearest neighbors degree is again equal
to the one obtained for the Barabási-Albert model, which indicates a lack
of two vertices correlations. On the other hand, the clustering spectrum is
here finite in the infinite size limit and scales as k−1,

c̄(k) =
2k − m

k(k − 1)
, (64)

and the overall clustering coefficient for large m is

C(m) 
 2m2 − 3m − 4/3 + 2m2(2 − m) ln
m

m − 1
. (65)

Bipartite representations7 constitute a special case since they provide
high levels of clustering by construction. In bipartite networks, two types
of nodes are present, such as for instance actors and films in the collab-
oration network of cinematographic productions. Links associate nodes in
one category with nodes in the second, in the previous example, actors with
films. The one-mode projection only preserves one of the two kinds of nodes
connected among them whenever they were linked to the same second type
node in the original bipartite composition, say only actors are preserved in
the one-mode projection and linked among them whenever they play in the
same movie. It is clear that this construction will produce fully connected
subsets of actors appearing in the same films, so that the number of trian-
gles in the network, and so the clustering, will be very high. On the other
hand, nothing can be said about the dependence of the clustering with the
degree and each pattern must be evaluated separately. Indeed, most social
networks are represented as the one-mode projection of originally bipartite
graphs. Then, the high levels of clustering measured in those networks are
strongly affected by the network construction.

3.5.6. Random graphs with attributes

Aside partial models, several works attempt to establish a general frame-
work for understanding and modeling correlations. Most of them are based
on breaking the similarity of nodes by the introduction of a new stochastic
characterization where vertices may come in different types. All these mod-
els generate ensembles of random networks which are able to reproduce a
wide range of asymptotic topological properties, including different classes
of correlation behaviors.
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3.5.7. Hidden color models

The idea of inhomogeneity in the characterization of vertices is at the heart
of the transition from regular latices to random graphs, where vertices have
no longer a predefined degree but a stochastic one described by a prob-
abilistic distribution. A further sophistication leads to the so called inho-
mogeneous random graphs models, where vertices may come in different
types and edges appear between the different classes with different proba-
bilities. In this context, the first unifying theoretical doctrine is the hidden
color formalism for the generation of colored degree-based sparse random
networks.96–98 Notice these graphs should not be confused with the colored
random graph.45

Graphs with hidden colors are constructed on the basis of the classical
configuration model and hence are also a static class of models. The key
idea is to define a color space l = {1, . . . , la, . . . , L} and to assign one of
these colors to each vertex’s edge end or stub. Then, the coloring of a
vertex i is given by kli = (k1i, . . . , kLi), where the number of stubs kai

of a given color a is got from the colored degree distribution pl defining
the relative frequencies of vertices with different colored degrees. Finally,
the color preference matrix TL×L controls the relative abundance of edges
between color pairs. The resulting ensemble of stub-colored graphs is well-
defined if the coloring is considered unobservable. Hence, the coloring can
be seen as a set of hidden variables introduced with the purpose of inducing
a nontrivial correlation structure in the resulting graphs.

This general framework allows the analytical calculation, in the ther-
modynamic limit, of global and local properties for a large class of mod-
els, which are seen to contrast to those of standard degree-driven random
graph (DRG) models. Edge correlations are studied through the generat-
ing function formalism by counting the expected number of triangles or
three-cycles, n�, wedges or three-chains, n∧, edges or two-chains, n| and
m-chains. While the result for 〈n∧〉 and 〈n|〉 is identical to that obtained
for plain degree-driven models, 〈n∧〉 = NE/2 and 〈n|〉 = N〈l〉/2 (where
〈l〉 =

∑L
a=1

∑
l plla), the non-colored number of triangles and k-chains are

found to be different. For instance, in the case of triangles:

〈n�〉HC =
(TE)3

6
(66)

〈n�〉DRG =
E3

6〈l〉3 , (67)

where E is the matrix of second order combinatorial moments, E ≡ Eab =
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∂a∂bp̂l(x = 1), with p̂l the Laplace transform of pl. Thus, for the degree-
driven random graphs one has 〈n�〉DRG = 〈∧〉3/[6〈n|〉3], a relation which
is absent in the hidden colors scenario.

The clustering coefficient C can also be computed from the count of the
expected number of triangles and three-chains:

CHC =
(TE)3

NE
(68)

CDGR =
(E)2

N〈l〉3 . (69)

Although CHC indeed scales as O(N−1), the finite quantity NCHC has a
nontrivial dependence on the color preference matrix T , an example of the
increased correlation possibilities of hidden color models over DRG models.

3.5.8. Fitness or hidden variables models

A powerful and systematic subclass of the family of models described above
is introduced as a class of correlated random networks with fitness or hidden
variables.58 Again, a hidden variable h, which can be defined in a discrete or
a continuous space, plays the role of a tag assigned to the vertices, and com-
pletely determines the topological properties of the network through their
probability distribution and the probability to connect pairs of vertices.

The procedure, which generates correlated undirected random networks
without loops or multiple edges, is as follows:

• Each vertex i is assigned a variable hi, independently drawn from
a probability distribution ρ(h).

• An undirected edge is created between a pair of vertices i and j

following a connection probability r(hi, hj), where r(h, h′) ≥ 0 is a
symmetric function of h and h′.

The resulting networks are Markovian at the hidden variable level, which
makes possible the calculation of analytical expressions for the most im-
portant structural properties, such as the degree distribution, the ANND
function for two vertices correlations, and the clustering coefficient for three
vertices correlations. The clue is in the conditional probability (the propa-
gator) g(k|h) that a vertex with initial hidden variable h ends up connected
to other k vertices, which enables to write expressions in the degree-space
as a function of distributions in the hidden variables space. For instance,

P (k) =
∑

h

g(k|h)ρ(h) (70)
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〈k〉 =
∑

k

kP (k) =
∑

h

k̄(h)ρ(h), (71)

where k̄(h) =
∑

k kg(k|h) is the average degree of nodes with hidden vari-
able h. The generating function formalism can be applied to find an explicit
expression for the propagator:

ln ĝ(z|h) = N
∑
h′

ρ(h′) ln[1 − (1 − z)r(h, h′)]. (72)

Even without solving this equation, one can find that:

k̄(h) = N
∑
h′

ρ(h′)r(h, h′) (73)

〈k〉 = N
∑
h,h′

ρ(h)r(h, h′)ρ(h′), (74)

and these results are valid for sparse and non-sparse networks.
Pair degree correlations can be calculated as

k̄nn(k) = 1 +
1

P (k)

∑
h

g(k|h)ρ(h)k̄nn(h) (75)

k̄nn(h) =
∑
h′

k̄(h′)p(h′|h), (76)

where k̄nn(h) is the ANND of a vertex of hidden variable h.
The degree dependent clustering is

c̄(k) =
1

P (k)

∑
h

ρ(h)g(k|h)ch, k = 2, 3, . . . (77)

ch =
∑

h′,h′′
p(h′|h)r(h′, h′′)p(h′′|h), (78)

with ch the clustering coefficient of a vertex h.
Furthermore, this analysis provides a new algorithm for the construction

of random networks with a correlation structure determined a priori:

• Assign to each vertex i an integer random variable k̃i, i = 1, . . . , N ,
drawn from the theoretical probability distribution Pt(k).

• For each pair of vertices i and j, draw an indirect edge with prob-
ability r(k̃i, k̃j) = 〈k〉Pt(k̃i, k̃j)/NPt(k̃i)Pt(k̃j).

In the large-k limit, the degree structure of the ensuing network will be
distributed according to the probability Pt(k), with correlations given by
Pt(k, k′).
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Despite its static character, another of the main achievements of this
general approach concerns its application to the mapping of growing net-
works into a particular kind of hidden variables model, where the hidden
variable associated to each vertex corresponds to its injection time. All
known results for growing models can be recovered from the hidden vari-
ables formalism.

3.5.9. Fitness and preferential attachment models

The original fitness model99 appeared as an attempt to loosen the prefer-
ential attachment rule in the Barabási-Albert model so that degree distri-
butions with exponents different from 3 could be obtained.

The fitness associated to each vertex is defined as a stochastic parameter
ηi picked out from a probability distribution ρ(η). The fitness embodies
properties, different from the degree, that may also influence the probability
Π of node i of gaining new edges, which is computed as

Π(ki, ηi) =
ηiki∑
j ηjkj

. (79)

Even if the distribution ρ(η) is the simplest one, that is uniform in the
interval [0, 1], the model generates a network displaying a non-trivial de-
gree distribution, and for some more complex alternatives the model also
reproduces structural correlations.

Inspired by the idea of fitness, a new mechanism leading also to scale-
free networks is obtained if the preferential attachment rule in terms of
the degree is eliminated and only the fitness remain.19 Since the fitness
is a non-evolving quantity, the network can then be built as static. Al-
though previous in time, this intrinsic fitness model is a particular example
of the general class of models with hidden variables, where the fitness is
distributed exponentially and nodes are joined whenever the sum of the
fitness of the endpoints is larger than a given constant threshold ζ, so that
r(h, h′) is the Heaviside step function Θ(x):

ρ(h) = e−h, h ε [0,∞] (80)

r(h, h′) = Θ(h + h′ − ζ). (81)

Within the hidden variables formalism, analytical expressions can be
computed for the main properties of the model.58 Two point correlations
are disassortative:

k̄nn(k) = 1 +
N2e−ζ

k

[
1 + ζ + ln

(
k

N

)]
Θk(Ne−ζ, N). (82)
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The clustering coefficient is

c̄(k) = Θk(Ne−ζ , Ne−ζ/2) (83)

+
N2e−ζ

k2

[
1 + ζ + 2 ln

(
k

N

)]
Θk(Ne−ζ/2, N), (84)

which reflects the fact that the clustering is equal to its maximum value 1
for all vertices with h < ζ/2. On the other hand, for Ne−ζ/2 ≤ k ≤ N it
decreases as k−2 but modulated by a logarithmic correction term.

3.6. Outlook

In general, as we have shown in the previous sections, uncorrelated random
graphs do not match real networks, which indeed in most cases show non-
trivial topological correlations encoding the properties of the underlying
hierarchical architecture or community structure. While uncorrelated ran-
dom networks are greatly valuable to provide null hypotheses for network
structures, correlated models can provide a more faithful image of reality.
Moreover, any deep understanding of the ordering principles governing the
formation and evolution of networks must take into account correlations,
clustering and other topological attributes. Despite the intense research
activity witnessed by the various results reported in this chapter, several
directions have yet to be fully explored. The characterization and modeling
of correlations in directed networks is surely at an early stage due to various
technical complications both in the mathematical tools and the data gath-
ering. The effect of correlations on networks physical properties has been
analyzed only in a handful of systems. Finally, the origin and meaning of
correlations spur also the question of which phenomena and dynamical as-
pects rule the development of these features. The physics of the dynamical
processes occurring on networks (traffic flows, communication transmission
etc.) has as well a role in determining specific correlation patterns. It is
therefore important to start bridging the topological properties of networks
with the dynamics acting on them, finding the interplay of these various
elements and their interaction rules. In this book, a chapter is devoted to
recent studies on weighted networks and the interaction among topologi-
cal features and weighted quantities representing the interactions or traffic
carried by the edges.
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80. M. A. Serrano and M. Boguñá, Physical Review E 68, 015101(R) (2003).
81. A. Bekessy, P. Bekessy and J. Komlos, Stud. Sci. Math. Hungar. 7, 343

(1972).
82. E. A. Bender and E. R. Canfield, J. Comb. Theory A 24, 296 (1978).
83. M. Molloy and B. Reed, Rand. Str. and Algth. 6, 161 (1995).
84. J. Park and M. E. J. Newman, Physical Review E 68, 026122 (2003).
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104. R. Guimerà and L. A. N. Amaral, European Physical Journal B 38, 381

(2004).
105. W. Li and X. Cai, Physical Review E 69, 046106 (2004).
106. C. Li and G. Chen, cond-mat/0311333.
107. D. Garlaschelli, S. Battiston, M. Castri, V. D. P. Servedio and G. Caldarelli,

Physica A 350, 491 (2004).
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(eds.), Springer-Verlag (2003), pp. 321-340, http://www.visone.de/

201. R. Brockenauer and S. Cornelsen, in Drawing Graphs: Methods and Models,
Lecture Notes in Computer Science, 2025, M. Kaufmann and D. Wagner
(eds.), Springer (2001), pp. 71-86.
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N. Amaral, cond-mat/0206240 (2002).
338. J. H. Jones and M. S. Handcock, Proceedings of the Royal Society B 270,

1123-1128 (2003).
339. F. Liljeros, R. Edling, L. A. N. Amaral, H. E. Stanley and Y. Aberg, Nature

411, 907 (2001).



June 6, 2007 9:49 WSPC/Trim Size: 9in x 6in for Review Volume book

248 References

340. R. K. Merton, Science 159, 56-63 (1968).
341. S. Maslov, K. Sneppen and A. Zaliznyak, cond-mat/0205379.
342. J.-L. Guillaume and M. Latapy, cond-mat/0307095.
343. M. Girvan and M. E. J. Newman, Proceedings National Academy Sciences

(USA) 99, 7821 (2002).
344. L. C. Freeman, Sociometry 40, 35 (1977).
345. J. R. Tyler, D. M. Wilkinson and B. A. Huberman, The Information Society

21, 133-141 (2005)
346. G. Caldarelli, C. Caretta Cartozo, P. De Los Rios and V. D. P. Servedio,

Physical Review E 69, 035101 (2004).
347. P. De Los Rios, Europhysics Letters 56, 898 (2001).
348. A. Maritan, A. Rinaldo, R. Rigon, A. Giacometti and I. Rodriguez-Iturbe,

Physical Review E 53, 1510 (1996).
349. A. Rinaldo, I. Rodriguez-Iturbe, R. Rigon, E. Ijjasz-Vazquez and L. R. Bras,

Physical Review Letters 70, 822 (1993).
350. S. Kramer and M. Marder, Physical Review Letters 68, 205 (1992).
351. K. Sinclair and R. C. Ball, Physical Review Letters 76, 3360 (1996).
352. M. O. Jackson and A. Wolinsky, Journal of Economic Theory 71, 44-74

(1996).
353. A. Kirman, Economic Journal 99, 126-39 (1989).
354. J. Galaskiewicz, Social Organization of the Urban Grant Economy, Aca-

demic Press, New York (1985).
355. J. Galaskiewicz and P. V. Marsden, Social Sci. Res. 7, 89-107 (1978).
356. S. Battiston, G. Caldarelli and D. Garlaschelli, preprint.
357. D. Garlaschelli, S. Battiston, M. Castri, V. D. P. Servedio and G. Caldarelli,

Physica A 350, 491-499 (2004).
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